1,886 research outputs found

    A Pinned Polymer Model of Posture Control

    Full text link
    A phenomenological model of human posture control is posited. The dynamics are modelled as an elastically pinned polymer under the influence of noise. The model accurately reproduces the two-point correlation functions of experimental posture data and makes predictions for the response function of the postural control system. The physiological and clinical significance of the model is discussed.Comment: uuencoded post script file, 17 pages with 3 figure

    Nonstationary Stochastic Resonance in a Single Neuron-Like System

    Full text link
    Stochastic resonance holds much promise for the detection of weak signals in the presence of relatively loud noise. Following the discovery of nondynamical and of aperiodic stochastic resonance, it was recently shown that the phenomenon can manifest itself even in the presence of nonstationary signals. This was found in a composite system of differentiated trigger mechanisms mounted in parallel, which suggests that it could be realized in some elementary neural networks or nonlinear electronic circuits. Here, we find that even an individual trigger system may be able to detect weak nonstationary signals using stochastic resonance. The very simple modification to the trigger mechanism that makes this possible is reminiscent of some aspects of actual neuron physics. Stochastic resonance may thus become relevant to more types of biological or electronic systems injected with an ever broader class of realistic signals.Comment: Plain Latex, 7 figure

    Stochastic Resonance in Ion Channels Characterized by Information Theory

    Full text link
    We identify a unifying measure for stochastic resonance (SR) in voltage dependent ion channels which comprises periodic (conventional), aperiodic and nonstationary SR. Within a simplest setting, the gating dynamics is governed by two-state conductance fluctuations, which switch at random time points between two values. The corresponding continuous time point process is analyzed by virtue of information theory. In pursuing this goal we evaluate for our dynamics the tau-information, the mutual information and the rate of information gain. As a main result we find an analytical formula for the rate of information gain that solely involves the probability of the two channel states and their noise averaged rates. For small voltage signals it simplifies to a handy expression. Our findings are applied to study SR in a potassium channel. We find that SR occurs only when the closed state is predominantly dwelled. Upon increasing the probability for the open channel state the application of an extra dose of noise monotonically deteriorates the rate of information gain, i.e., no SR behavior occurs.Comment: 10 pages, 2 figures, to appear in Phys. Rev.

    Scaling-violation phenomena and fractality in the human posture control systems

    Get PDF
    By analyzing the movements of quiet standing persons by means of wavelet statistics, we observe multiple scaling regions in the underlying body dynamics. The use of the wavelet-variance function opens the possibility to relate scaling violations to different modes of posture control. We show that scaling behavior becomes close to perfect, when correctional movements are dominated by the vestibular system.Comment: 12 pages, 4 figures, to appear in Phys. Rev.

    Access to public information through localisation

    Get PDF
    The paper analyses language policy in Ireland and the extent to which multilingual information is provided on public service websites

    Nonstationary Stochastic Resonance

    Full text link
    It is by now established that, remarkably, the addition of noise to a nonlinear system may sometimes facilitate, rather than hamper the detection of weak signals. This phenomenon, usually referred to as stochastic resonance, was originally associated with strictly periodic signals, but it was eventually shown to occur for stationary aperiodic signals as well. However, in several situations of practical interest, the signal can be markedly nonstationary. We demonstrate that the phenomenon of stochastic resonance extends to nonstationary signals as well, and thus could be relevant to a wider class of biological and electronic applications. Building on both nondynamic and aperiodic stochastic resonance, our scheme is based on a multilevel trigger mechanism, which could be realized as a parallel network of differentiated threshold sensors. We find that optimal detection is reached for a number of thresholds of order ten, and that little is gained by going much beyond that number. We raise the question of whether this is related to the fact that evolution has favored some fixed numbers of precisely this order of magnitude in certain aspects of sensory perception.Comment: Plain Latex, 6 figure

    Exponential-Potential Scalar Field Universes I: The Bianchi I Models

    Full text link
    We obtain a general exact solution of the Einstein field equations for the anisotropic Bianchi type I universes filled with an exponential-potential scalar field and study their dynamics. It is shown, in agreement with previous studies, that for a wide range of initial conditions the late-time behaviour of the models is that of a power-law inflating FRW universe. This property, does not hold, in contrast, when some degree of inhomogeneity is introduced, as discussed in our following paper II.Comment: 16 pages, Plain LaTeX, 1 Figure to be sent on request, to appear in Phys. Rev.

    Consistent histories of systems and measurements in spacetime

    Full text link
    Traditional interpretations of quantum theory in terms of wave function collapse are particularly unappealing when considering the universe as a whole, where there is no clean separation between classical observer and quantum system and where the description is inherently relativistic. As an alternative, the consistent histories approach provides an attractive "no collapse" interpretation of quantum physics. Consistent histories can also be linked to path-integral formulations that may be readily generalized to the relativistic case. A previous paper described how, in such a relativistic spacetime path formalism, the quantum history of the universe could be considered to be an eignestate of the measurements made within it. However, two important topics were not addressed in detail there: a model of measurement processes in the context of quantum histories in spacetime and a justification for why the probabilities for each possible cosmological eigenstate should follow Born's rule. The present paper addresses these topics by showing how Zurek's concepts of einselection and envariance can be applied in the context of relativistic spacetime and quantum histories. The result is a model of systems and subsystems within the universe and their interaction with each other and their environment.Comment: RevTeX 4; 37 pages; v2 is a revision in response to reviewer comments, connecting the discussion in the paper more closely to consistent history concepts; v3 has minor editorial corrections; accepted for publication in Foundations of Physics; v4 has a couple minor typographical correction

    Hydrogen-Helium Mixtures at High Pressure

    Full text link
    The properties of hydrogen-helium mixtures at high pressure are crucial to address important questions about the interior of Giant planets e.g. whether Jupiter has a rocky core and did it emerge via core accretion? Using path integral Monte Carlo simulations, we study the properties of these mixtures as a function of temperature, density and composition. The equation of state is calculated and compared to chemical models. We probe the accuracy of the ideal mixing approximation commonly used in such models. Finally, we discuss the structure of the liquid in terms of pair correlation functions.Comment: Proceedings article of the 5th Conference on Cryocrystals and Quantum Crystals in Wroclaw, Poland, submitted to J. Low. Temp. Phys. (2004

    Examining the ecological validity of the Talent Development Environment Questionnaire

    Get PDF
    It is clear that high class expertise and effective practice exists within many talent development environments across the world. However, there is also a general consensus that widespread evidence-based policy and practice is lacking. As such, it is crucial to develop solutions which can facilitate effective dissemination of knowledge and promotion of evidence-based talent development systems. While the Talent Development Environment Questionnaire (Martindale et al., 2010 ) provides a method through which this could be facilitated, its ecological validity has remained untested. As such, this study aimed to investigate the real world applicability of the questionnaire through discriminant function analysis. Athletes across ten distinct regional squads and academies were identified and separated into two broad levels, 'higher quality' (n = 48) and 'lower quality' (n = 51) environments, based on their process quality and productivity. Results revealed that the Talent Development Environment Questionnaire was able to discriminate with 77.8% accuracy. Furthermore, in addition to the questionnaire as a whole, two individual features, 'quality preparation' (P < 0.01) and 'understanding the athlete' (P < 0.01), were found to be significant discriminators. In conclusion, the results indicate robust structural properties and sound ecological validity, allowing the questionnaire to be used with more confidence in applied and research settings
    • …
    corecore